Dr. Nguyen Van Thien

Dr. Nguyen Van Thien

Faculty of Mathematics

Interested Fields: Mathematics

Google Scholar

Research Gate


Personal information

  • Full name: Nguyen Van Thien
  • Sex: Male
  • Nationality: Vietnamese
  • Email: thiennv15@fe.edu.vn


  • 2018: Ph.D. in Mathematics, Institute of Mathematics, Department of Mathematics and Computer Science, Jagiellonian University
  • 2012: Master 2 in fundamental Mathematics, Institute Fourier, Grenoble Alps University , Grenoble, France
  • 2011: Master 1 in Mathematics, Institute of Mathematics, VAST, Vietnam
  • 2009: B.S. in Mathematics, Hanoi National University, Vietnam

Research Interest

Complex Hessian Operator, Monge-Amp`ere Operators, K¨ahler manifolds, Applied mathematics


  1. Samsul Ariffin Abdul Karim, Azizan Saaban, Nguyễn Văn Thiện, Scattered Data Interpolation Using Quartic Triangular Patch for Shape-Preserving Interpolation and Comparison with Mesh-Free Methods, Symmetry 2020, 12(7), 1071, (7/2020, Q2 (SJR 0.37), ISI/Scopus, Google Scholar).
  2. Jinxia Cen, Chao Min, Nguyễn Văn Thiện, Guo-ji Tang, On the well-posedness of differential quasi-variational-hemivariational inequalities, Open Mathematics, Vol. 18 (2020), 540–551(6/2020, Q3 (SJR 0.39), ISI/Scopus, Google Scholar).
  3. Nguyễn Văn Thiện, Samsul Ariffin Abdul Karim, Trương Đình Đạt, A note on the space of delta m-subharmonic functions, AIMS Mathematics, Vol. 05 No.03 (2020), 2369–2375. (03/2020, Scopus, Google Scholar).
  4. Stanis Maw Migorki, Nguyễn Văn Thiện, Shengda Zeng, Nonlocal Elliptic Variational-Hemivariational Inequalities, Nonlocal Elliptic Variational-Hemivariational Inequalities, (2020 – in press, Q3 (SJR 0.38), ISI/Scopus, Google Scholar)
  5. Shengda Zeng, Leszek Gasiński, Nguyễn Văn Thiện, Yunru Bai, Topological properties of the solution sets for parametric nonlinear Dirichlet problems, Complex Variables and Elliptic Equations, (2020 – in press, Q2 (SJR 0.75), Google Scholar).
  6. Zhenhai Liu, Nguyễn Văn Thiện, Jen-Chih Yao, Shengda Zeng, History-dependent differential variational-hemivariational inequalities with applications to contact mechanics, Evolution Equations And Control Theory. (2020 – in press, Q1 (SJR 0.84), Google Scholar).
  7. Stanisław Migórski, Nguyễn Văn Thiện, Shengda Zeng, Solvability of parabolic variational-hemivariational inequalities involving space-fractional Laplacian, Applied Mathematics and Computation a, Vol. 364 (2020), 124668. (1/2020, ISI/Scopus, Q1 (SJR 0.93), Google Scholar).
  8. Nguyễn Văn Thiện, Maximal m-subharmonic functions and the Cegrell class N_m, Indagationes Mathematicae, Vol. 30 (2019), 717–739. (7/2019, ISI/Scopus, Q2 (SJR 0.69), Google Scholar).
  9. S. Mig´orski, V.T. Nguyen, S. Zeng,   Nonlocal elliptic variational-hemivariational inequalities, J. Integral. Equ. Appl 364 (2020),124668.
  10. V.T.  Nguyen,    Maximal m-subharmonic functions and the Cegrell class              n, Indagationes Mathematicae 30 (2019), 717-739.
  11. V.T. Nguyen, Hessian boundary measures, International Journal of Mathematics 30 (2019), no. 3, 17 pp.
  12. V.T. Nguyen, A characterization of the Cegrell classes and generalized m-capacities, Ann. Polon. Math. 121 (2018), 33-43.
  13. V.T. Nguyen, On m-subharmonic ordering of measures, Results Math. 73 (2018), no. 1, Art. 5, 18 pp.
  14. V.T. Nguyen, The convexity of radially symmetric m-subharmonic functions,  Complex.  Var.  Elliptic.  Equ. published online (2017), 1-11.
  15. R. Czyz˙, V.T. Nguyen,   On a constant in the energy estimate, C. R. Math.  Acad.  Sci.  Paris 355 (2017), no. 10, 1050-1054.
  16. V.T. Nguyen, On delta m-subharmonic functions, Ann. Polon. Math 118 (2016), 25-49.